Применение молибдена
Молибден это один из самых востребованных элементов в химической промышленности.
Оно произошло лишь в последней четверти прошлого века. В 1885 г. на Путиловском заводе выплавили сталь, в которой содержалось 0,52% углерода и 3,72% молибдена.
Свойства ее оказались почти такими же, как у вольфрамовой стали; прежде всего привлекала ее большая твердость и как следствие — пригодность для изготовления металлорежущего инструмента.
Всего 0,3% молибдена увеличивали твердость стали в такой же степени, как 1% вольфрама, но это узнали уже позже.
Влияет молибден и на качество чугуна. Добавка молибдена позволяет получить мелкокристаллический чугун с повышенной прочностью и износоустойчивостью.
В 1900 г. на Всемирной промышленной выставке в Париже была выставлена сталь, содержавшая молибден и обладавшая замечательным свойством: резцы из нее закалялись в процессе работы.
А за 10 лет до этого, в год столетия со дня открытия элемента № 42, был разработан процесс выплавки ферромолибдена — сплава молибдена с железом.
Добавляя в плавку определенные количества этого сплава, начали выпускать специальные сорта стали.
Молибден наряду с хромом, никелем, кобальтом нашел широкое применение как легирующий элемент, причем сталь легируют обычно не техническим молибденом, а ферромолибденом — так выгоднее.
Тем временем приближалась первая мировая война. Военные ведомства европейских держав требовали от промышленности крепкой брони для кораблей и укреплений, особо прочной стали для пушек.
Орудийные стволы начали изготовлять из хромомолибденовых и никельмолибденовых сталей, отличающихся высоким пределом упругости и в то же время поддающихся токарной обработке с высокой степенью точности.
Из хромомолибденовой делали бронебойные снаряды, судовые валы и другие важные детали.
Фирма «Винчестер» применила эту сталь для изготовления винтовочных стволов и ствольных коробок.
Появлялось все больше тяжелых моторов. Для них нужны были крупные шариковые и роликовые подшипники, выдерживающие большую нагрузку.
И для этой цели подошли хромомолибденовые и никельмолибденовые стали.
В наше время, когда ежегодно добывают из недр Земли миллионы тонн молибденовых руд, 90% всего молибдена поглощает черная металлургия.
Молибден в авиации
Когда самолеты перестали делать из дерева и парусины, понадобились не только мощные моторы и легкие металлические листы обшивки, но и жесткий каркас из металлических трубок.
Вначале авиация довольствовалась трубами из углеродистой стали, но размеры самолетов все росли. Потребовались трубы значительно большего диаметра, но с малой толщиной стенки.
Трубы из хромованой стали в принципе могли бы подойти, но эта сталь не выдерживала протяжки до нужных размеров, а в местах сварки такие трубы при охлаждении «отпускались» и теряли прочность.
Выйти из этого тупика удалось благодаря хромомолибденовой стали. Трубы из нее хорошо протягивались, прекрасно сваривались и, что главное, в тонких сечениях не «отпускались» при сварке, а, наоборот, самозакалялись на воздухе.
Количество молибдена в стали, из которой их протягивали, было крайне невелико: 0,15—0,30%.
Молибден применение в электротехнике и радиотехнике
Нити накаливания обычных электрических ламп делают из вольфрама, более тугоплавкого, чем все прочие металлы, и дающего наибольшую светоотдачу.
Но если впаять вольфрамовую нить в стеклянный стерженек в центре лампочки, то он вскоре треснет из-за теплового расширения нити.
Когда исследовали физические свойства молибдена, то обнаружили, что у него ничтожно малый коэффициент теплового расширения.
При нагреве от 25 до 500° С размеры молибденовой детали увеличатся всего на 0,0000055 первоначальной величины. И даже при нагреве до 1200° С молибден почти не расширяется.
Поэтому вольфрамовые нити накаливания стали подвешивать на молибденовых крючках, впаянных в стекло.
В дальнейшем молибден сыграл еще большую роль в электровакуумной технике.
К вакуумным приборам электрический ток подводится через молибденовые прутки, впаянные в специальное стекло, имеющее одинаковый с молибденом коэффициент теплового расширения (это стекло носит название молибденового).
Жаропрочные сплавы молибдена
Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы.
Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала.
Температурный предел эксплуатации титановых сплавов 550— 600° С, молибденовых — 860, а титано-молибденовых — 1500° С.
Чем объяснить столь значительный скачок? Его причина — в строении кристаллической решетки. В объемно-центрированную структуру молибдена внедряются посторонние атомы, на этот раз атомы титана.
Получается так называемый твердый раствор внедрения, структуру которого можно представить так.
Атомы молибдена, металла-основы, располагаются по углам куба, а атомы добавленного металла, титана,—в центрах этих кубов.
Вместо объем-по-центрированной кристаллической решетки появляется гранецентрированная, в которой процессы разупрочнения под действием температур происходят намного менее.
В таком целенаправленном изменении кристаллической структуры металлов состоит один из основных принципов легирования.
Другая причина столь резкого увеличения жаропрочности кроется в том, что сплавляются очень непохожие металлы — молибден и титан.
Это общее правило: чем больше разница между атомами легирующего металла и металла-основы, тем прочнее образующиеся связи. Металлическая связь как бы дополняется химической.
Легирование, однако, вовсе не последнее слово в решении проблемы жаропрочных сплавов. Уже в наше время обнаружены необычайные свойства нитевидных кристаллов, или «усов».
Прочность их по сравнению с металлами, обычно используемыми в технике, поразительно велика.
Объясняется это тем, что кристаллическая структура усов практически лишена дефектов, и техника сверхскоростных полетов берет на вооружение усы, создавая с их помощью композиционные жаропрочные материалы.
Один из таких материалов — это окись алюминия, армированная молибденовыми усами, другой представляет собой начиненный той же арматурой технический титан.
По сравнению с обычным титаном этот материал может работать в жестких условиях в 1000 раз дольше.
Что можно противопоставить огненному смерчу, обрушивающемуся на космический корабль при входе в плотные слои атмосферы? Прежде всего теплозащитную обмазку и охлаждение.
Да, охлаждение, подобное в принципе охлаждению автомобильных двигателей с помощью радиаторов. Только работать здесь должны более энергоемкие процессы.
Много тепла нужно на испарение веществ, но еще больше на сублимацию — перевод из твердого состояния непосредственно в газообразное.
При высоких температурах сублимировать способны молибден, вольфрам, золото.
Покрытие носовой части корабля молибденом или другим из перечисленных (более дорогих) металлов в значительной мере ослабит силу огненного смерча, через который надо пройти возвращаемому аппарату космического корабля.
Статья на тему молибден применение