Углерод интересные факты
А вообще в космосе углерода довольно много. Советские космические станции «Венера-4», «Венера-5» и «Венера-6» установили, что атмосфера утренней звезды состоит преимущественно из углекислого газа. Этот газ преобладает и в атмосфере Марса.
А вот в атмосферах Сатурна, Юпитера, Урана и Нептуна наряду с аммиаком доминирует иное соединение углерода — метан. Углерод обнаружен в составе метеоритов и комет. С помощью спектроскопических наблюдений углерод найден и на далеких звездах. В спектрах относительно холодных звезд не раз наблюдались полосы поглощения, характерные для радикалов СН*, CN* и С2* Не без оснований предполагают, что радикалы СН* и CN* есть в газопылевой среде, заполняющей межзвездное пространство.
ПОМОЩНИК МЕТАЛЛУРГА. Углерод— не металл. Но по некоторым характеристикам, в частности по теплопроводности и электропроводности, графит весьма «металлоподобен». Углерод — не металл, и тем не менее это один из важнейших для металлургии элементов.
Именно благодаря ему совершенно непригодное в качестве конструкционного материала мягкое, слабое железо становится чугуном или сталью. В последние десятилетия получили распространение таки называемой графитизированные стали, в структуре которых есть свободные микрокристаллы графита. В основном эти стали идут на производство инструмента, коленчатых валов, штампов в поршней, потому что им свойственна большая, чем у иных нелегированных сталей , прочность и твёрдость .
Как восстановитель углерод применяют не только в производстве чугуна , но и цветных металлов Практически в роли восстановителя выступает кокс, в котором углерода 97—98%. А вот древесный уголь — первый, видимо, восстановитель в черной металлурги — в цветной металлургии вашего времени выступает в ином качество. Из него делают так называемый покровный слой, предохраняющий расплавленный металл от окисления.
Не обходится без углерода и производство алюминия — металл нарастает на графитовом катоде.
А в доменном процессе обычно участвует не только элементный углерод (в виде коксе), но и одно ив соединений элемента № 6. Обыкновенные плотные известняки применяют в качестве флюсов при выплавке чугуна из железных руд, содержащих в качестве пустой породы кремнезем и глинозем.
ПОКА ЕЩЕ ОСНОВА. Уголь, нефть, горючие сланцы, торф, при родным газ — материальная основа теплоэнергетики прошлого, настоящего и ближайшего будущего. Потому что, как ни радужны перспективы атомной энергетики, еще довольно много лет атом будет ходить в подсобных. Пока его доля в производстве электроэнергии сравнительно мала.
Со временем роли, видимо, перемежится. Тогда «подсобниками» станут нынешние гегемоны— природные топлива на углеродной основе. И, видимо, придет время, когда горючие ископаемые будут целиком идти на химическую переработку. Пока же большая часть их отправляется в топки и двигатели, которые по существу тоже топки.
СИНТЕЗ АЛМАЗА. В декабре 1954 г. американская фирма «Дженерал электрик» сообщила, что сотрудники этой фирмы Холл, Банди и другие получили искусственные алмазы в виде мелких треугольных пластин. Процесс синтеза вели под давлением порядка 100 тыс. атм. и при температуре 2600°С. Катализатором был тантал, а если говорить точнее, то алмаз из графита получали на тонкой пленке карбида тантала, образовывавшейся в ходе алмазного синтеза.
Впрочем, еще раньше, в феврале 1953 г., первые искусственные алмазы получила группа Эрика Гуннара Лундблада (Швеция), но шведские ученые не торопились с публикацией результатов своих .
С тех пор, с середины 50-х годов XX в., успешные работы по промышленному синтезу алмазов ведутся в ряде стран. В нашей стране эту работу возглавляли В. Н, Бакуль и академик Л. Ф. Верещагин. Известно, например, что в середине 70-х годов Горьковский автомобильный завод расходовал в год до 400 тыс. каратов искусственных алмазов. Один завод — 80 кг алмазов! Примерно столько же «тратил» их Сестрорецкпй инструментальный завод и некоторые другие предприятия.
В мире уже производятся и синтетические алмазы ювелирного качества; обходятся они намного дороже природных.
Промышленный синтез алмазов — большое достижение науки и техники. Ученые шли к нему многие десятилетия. Большинство попыток, предпринимавшихся в прошлом, заканчивались неудачей. Но были и проблески. О двух из них и о синтезе алмаза в метеоритном веществе рассказывают следующие заметки.
МЕТЕОРИТ… СЪЕЛИ. Немаловажной вехой в осознании возможности образования алмазов вне земной коры послужило обнаружение алмазных крупинок в метеорите, упавшем 10 (по старому стилю) сентября 1886 г. возле деревни Новый Урей Краснослободского уезда Пензенской губернии .
Крупинки алмаза были обнаружены в метеоритном веществе преподавателями Петербургского лесного института доцентом-минералогом Михаилом Васильевичем Ерофеевым и профессором химии Павлом Александровичем Лачиновым (известен больше всего работами по холестерину, которыми занимался в последние годы жизни).
Осколки метеорита «Новый Урей» были присланы в Петербург бывшим студентом Лесного института учителем Павлом Ивановичем Барышниковым.
Приводим выдержки из его письма директору Лесного института: «…Рано поутру несколько новоурейских крестьян верстах в трех от деревни пахали свое поле… Вдруг совершенно неожиданно сильный свет озарил всю окрестность; затем черев несколько секунд раздался страшный треск, подобный пушечному выстрелу или взрыву, за ним второй, более сильный.
Вместе с шумом в нескольких саженях от крестьян упал на землю огненный шар; вслед за этим шаром невдалеке над лесом опустился другой, значительно больше первого. Все явление продолжалось не более минуты.
Обезумевшие от страха крестьяне не знали, что делать, они попадали на землю и долго не решались сдвинуться с места… Наконец один из них, несколько ободрившись, отправился к тому месту… и, к удивлению своему, нашел неглубокую яму; в середине ее, углубившись до половины в землю, лежал очень горячий камень черного цвета. Тяжесть камня поразила крестьян….
Затем они отправились к лесу разыскать второй, больший камень, но все усилия их были напрасны: лес в этом месте представляет много болот и топей, и найти аэролита им не удалось: по всей вероятности, он упал в воду.
На следующий день один из крестьян того же Урейского выселка отправился на свое поле посмотреть копны гречихи. Здесь совершенно случайно им найден был такой же точно камень, какой принесли накануне его соседи. Камень тоже образовал вокруг себя ямку; часть камня была в земле… Дальнейшие поиски крестьян в окрестностях Нового Урея не привели ни к чему.
Следовательно, выпало всего три куска. Самый большой из них упал, без сомнения, в лесу в болото; второй по величине, упавший при крестьянах на пашне, приобретен мною и отослан Вам для минералогического кабинета института и, наконец, третий, найденный крестьянином в гречихе, съеден…
Крупинки аэролита считались положительно универсальным лекарством. Распространились нелепые слухи о «чудесном исцелении», требования на «христов камень» усилились; счастливый владелец метеорита пользовался случаем и продавал камешек чуть не на вес золота, выказывая при этом слабости настоящего завзятого аптекаря. Прием «христова камня» производился таким образом: пациент, купивши ничтожный кусочек метеорита , толок и растирал его в порошок и затем, смешав с водой, благоговейно выпивал, творя молитву и крестное знамение…»
За открытие алмазов в метеорите Российская Академия наук присудила Ерофееву и Лачинову Ломоносовскую премию. А каких-либо следов того, что хоть кто-нибудь обратил внимание па беспросветную темноту крестьян, история не сохранила.
Небесное тело (вернее, часть его), присланное Барышниковым в институт, весило 1762,3 г; позже были получены еще два осколка — весом 21,95 и 105,45 г. Не считая двух десятков граммов, израсходованных Ерофеевым и Лачиновым на анализы, метеорит сохранился.
Его можно видеть и сейчас в Ленинградском горном музее.
КАНДИДАТ В САМЫЕ ПРОЧНЫЕ? В 1975 г. были опубликованы расчеты, проведенные советскими химиками В. В. Коршаком, В. И. Касаточкиным и К. Е. Перепелкиным, согласно которым наибольшая теоретическая прочность из всех имеющихся на Земле веществ должна быть у линейного полимера углерода — карбина. Разумеется, такой ультрапрочный карбин должен быть изготовлен в виде бездефектных нитевидных кристаллов. Раньше считали, что теоретически самое прочное вещество — графит (13 тыс. кг/мм2), для карбина же вычисленная величина предельной прочности почти вдвое больше — 22—23 тыс. кг/мм2.
Что нужно, чтобы материал был очень прочным? Во-первых, высокие значения энергии химических связей. Во-вторых, направления этих связей должны по возможности совпадать и идти вдоль оси кристалла. В-третьих, если вещество полимерного строения, нужно, чтобы степень его полимеризации была высокой. Четвертое обязательное условие — отсутствие в макромолекуле «слабых мест» и слабых связей. Все эти условия соблюдены в карбине, поэтому рекордные значения расчетной теоретической прочности, в общем, не удивительны.
КАРБИН В ПРИРОДЕ. В 1970 г. геофизики из Института Карнеги обнаружили в метеоритном кратере Рис на территории ФРГ новый минерал, состоящий на 99,99% из углерода. Но это, определенно, не были ни алмаз, ни графит. Исследования показали, что минерал из кратера Рис скорее всего представляет собой природную разновидность синтезированного несколькими годами раньше карбина. ВОЗРАСТ — ПО 14С. Метод определения возраста исторических находок по содержанию в них радиоактивного изотопа углерода 14С разработан известным физиком, лауреатом Нобелевской премии Фрэнком Уиллардом Либби.
Углерод-14 — один из природных радиоактивных изотопов, период его полураспада 5570 лет.
Поток космических протонов, летящих со скоростью, близкой к скорости света, непрерывно бомбардирует Землю. Уже в верхних слоях атмосферы протоны сталкиваются с ядрами азота и кислорода. При таких столкновениях атомы разрушаются, в результате чего получаются свободные нейтроны, моментально захватываемые ядрами элементов воздуха, в первую очередь, конечно, ядрами атомов азота. И тогда происходит одно из чудес, признаваемых наукой,— взаимопревращение элементов: азот становится углеродом, только не простым, а радиоактивным углеродом-14. Ядра углерода-14, распадаясь, испускают электроны и вновь превращаются в ядра азота.
Зная период полураспада изотопа, нетрудно подсчитать, сколько его теряется за любой промежуток времени. Подсчитали, что за год на Земле распадается примерно 7 кг радиоуглерода. Это означает, что на нашей планете естественным путем поддерживается постоянное количество этого изотопа — в результате ядерных реакций, идущих в атмосфере, Земля ежегодно «приобретает» около 7 кг 14С.
Земная атмосфера углеродом не богата. В ней всего 0,03% (по объему) двуокиси углерода СО2. Но в пересчете на вес это не так уж мало: общее содержание углерода в атмосфере — около 600 млн. т. И в каждом биллионе молекул атмосферной СО2 есть один атом 14С. Эти атомы вместе с обычными усваиваются растениями, а оттуда попадают в организмы животных и человека.
В любом живом организме есть радиоуглерод, который постепенно распадается и обновляется. В грамме «живого» углерода каждую минуту происходят 14 актов радиоактивного распада. Опыт показывает, что концентрация этого изотопа одинакова во всем живом на нашей планете, хотя в силу некоторых геофизических причин радиоуглерод «приземляется» преимущественно в полярных районах.
Но вот организм гибнет и перестает быть эвеном непрерывно идущего па Земле круговорота углерода. Новый радиоуглерод в него уже не поступает, а радиоактивный распад продолжается. Через 5570 лет количество радиоуглерода в отмершем организме уменьшится вдвое, и в грамме углерода, извлеченного из дерева, срубленного 5570 лет назад, чувствительные счетчики за минуту зафиксируют уже не 14, а лишь 7 актов распада. Поэтому с помощью радиоуглерода можно определить возраст практически любого предмета, сделанного на материалов растительного или животного происхождении.
Датировка предметов древности по радиоуглероду в высшей степени удобна и достаточно точна. Причиной тому период полураспада 14С — 5570 лет, Возраст человеческой культуры — величина того же порядка…
Этот метод помог определить даты древних вулканических извержен ни в время вымирания некоторых видов животных. Он помог разоблачить не одну археологическую подделку, когда за свидетельства древности выдавались, например, черепа с подпиленными зубами.
Но главной заслугой метода следует, видимо, считать установление времени ледниковых периодов.
Радиоуглеродные измерения показали: за последние 40 тыс. лет на Земле было три ледниковых периода. Самый поздний — примерно 10 400 лет назад. С тех пор на Земле относительно тепло.
СВИДЕТЕЛЬСТВО ФРИДРИХА ВЁЛЕРА. Этот немецкий химик, синтезировав в 1824 г. мочевину, пробил первую брешь в учении виталистов (от vitalis — жизненный), считавших, что нельзя получить органические вещества без помощи «жизненной силы». Правда, те не растерялись и объявили, что, дескать, мочевина — отброс организма, и потому ее можно синтезировать и без помощи «жизненной силы». Но в середине XIX в. это учение стало «трещать по швам» под напором все новых и новых органических синтезов. Однако до появления теории химического строения, созданной Александром Михайловичем Бутлеровым, в среде органиков царил разброд. Теории рождались и умирали с частотой бабочек-однодневок.
Известны слова Вёлера, сказанные в 1835 г.: «Органическая химия может ныне кого угодно свести с ума… она представляется дремучим лесом, полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть».
ИЗОМЕРИЯ И ЗАПАХ. Вещества одинакового состава, но разного пространственного расположения называют изомерами. О том, как сказывается эта разница на свойствах, можно судить на примере довольно простого органического соединения — ванилина и его аналога изованилина. Ванилин — одно из наиболее известных душистых веществ, его приятный запах знаком, по-видимому, всем. А изованилин при нормальных условиях почти не пахнет, если же его нагреть, распространится малоприятный запах, подобный запаху карболки. Ароматы разительно отличаются, а разницы в составе нет .
НЕДООКИСЬ. У углерода не два, как принято считать, а три окисла. Кроме общеизвестных СО2 и СО, существует недоокись С3О2, которую считают ангидридом известной органической кислоты — малоновой; НООС—СН2—СООН.
ТКАНЬ ИЗ АКТИВИРОВАННОГО УГЛЯ. Ее на рубеже 70-х-80-х гг. нашего столетия удалось получить английским химикам. Способ получения, в принципе, не нов — так же примерно еще раньше получали углеродные волокна различного назначения. Брали ткань на целлюлозной основе, пропитывали определенной композицией растворенных в воде солей и помещали в печь с атмосферой из углекислого газа.
При температуре около 700° С ткань обугливалась, но вели процесс таким образом, чтобы и после этого сохранилась структура ткани. Первое применение ткани из активированного угля — сорбирующие повязки медицинского назначения. С помощью этих повязок из крови удаляют избыток медикаментов, токсины и другие продукты жизнедеятельности микроорганизмов.
О ЗЕРКАЛЬНОМ УГЛЕРОДЕ. В 1962 г. академик В. А. Каргин с сотрудниками впервые обнаружил так называемые углеродные блестки, на основе которых впоследствии был создан оригинальный материал — зеркальный углерод. Он и вправду хорошо полируется и отражает световые лучи, но интересен не только этим. Упомянутые в предыдущей заметке углеродные волокна имеют полимерную структуру зеркального углерода. Появился чисто углеродный композиционный материал УУУВ — углерод, упрочненный углеродным же волокном.
АЛМАЗНЫЕ ПЛЁНКИ. Среди современных материалов на алмазной основе особое место занимают алмазные плёнки. Первый способ получения таких пленок — импульсный — был предложен советскими учеными Б. В. Дерягиным и Д. В. Федосеевым. Получены и нитевидные кристаллы алмаза — «усы».
Статья на тему углерод интересные факты