Химия IV группа химических элементов Титан химический элемент Титан история

Титан история

ТИТАН ИСТОРИЯ

Монумент в честь покорителей космоса воздвигнут в Москве в 1964 г. Почти семь лет (1958—1964) ушло на проектирование и сооружение этого обелиска. Авторам пришлось решать не только архитектурно-художественные, но и технические задачи. Первой из них был выбор материалов, в том числе и облицовочных. После долгих экспериментов остановились на отполированных до блеска титановых листах.
Действительно, по многим характеристикам, и прежде всего по коррозионной стойкости, титан превосходит подавляющее большинство металлов и сплавов. Иногда (особенно в популярной литературе) титан называют вечным металлом. Но расскажем сначала об истории этого элемента.
 
Окисел или не окисел
До 1795 г. элемент № 22 назывался «менакином». Так назвал его в 1791 г. английский химик и минералог Уильям Грегор, открывший новый элемент в минерале менаканите (не ищите это название в современных минералогических справочниках — менаканит тоже переименован, сейчас он называется ильменит).
Спустя четыре года после открытия Грегора немецкий химик Мартин Клапрот обнаружил новый химический элемент в другом минерале — рутил — и в честь царицы эльфов Титании (германская мифология) назвал его титаном.
По другой версии название элемента происходит от титанов, могучих сыновей богини земли — Геп (греческая мифология),
В 1797 г. выяснилось, что Грегор и Клапрот открыли один и тот же элемент, и хотя Грегор сделал это раньше, за новым элементом утвердилось имя, данное ему Клапротом.
Но ни Грегору, ни Клапроту не удалось получить элементный титан. Выделенный ими белый кристаллический порошок был двуокисью титана TiO2. Восстановить этот окисел, выделить из него чистый металл долгое время не удавалось никому из химиков.
В 1823 г. английский ученый У. Волластон сообщил, что кристаллы, обнаруженные им в металлургических шлаках завода «Мертир-Тидвиль»,- не что иное, как чистый титан. А спустя 33 года известный немецкий химик Ф. Вслер доказал, что и эти кристаллы были опять-таки соединением титана, на этот раз — металлоподобным карбонитридом.
Много лет считалось, что металлический титан впервые был получен Берцелиусом в 1825 г. при восстановлении фтортитаната калия металлическим натрием. Однако сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что президент Шведской академии наук ошибался, ибо чистый титан быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а металлический титан Берцелиуса успешно сопротивлялся ее действию.
В действительности титан был впервые получен лишь в 1875 г. русским ученым Д. К. Кирилловым. Результаты этой работы опубликованы в его брошюре «Исследования над титаном». Но работа малоизвестного русского ученого осталась незамеченной. Еще через 12 лет довольно чистый продукт — около 95 % титана — получили соотечественники Берцелиуса, известные химики Л. Нильсон и О. Петер-сон, восстанавливавшие четыреххлористый титан металлическим натрием в стальной герметической бомбе.
В 1895 г. французский химик А. Муассан, восстанавливая двуокись титана углеродом в дуговой печи и подвергая полученный материал двукратному рафинированию, получил титан, содержавший всего 2% примесей, в основном углерода. Наконец, в 1910 г. американский химик М. Хан-тер, усовершенствовав способ Нильсона и Петерсона, сумел получить несколько граммов титана чистотой около 99%. Именно поэтому в большинстве книг приоритет получения металлического титана приписывается Хантеру, а не Кириллову, Нильсону или Муассану.
Однако ни Хантер, ни его современники не предсказывали титану большого будущего. Всего несколько десятых процента примесей содержалось в.металле, но эти примеси делали титан хрупким, непрочным, непригодным к механической обработке. Поэтому некоторые соединения титана нашли применение раньше, чем сам металл. Четы-реххлористый титан, например, широко использовали в первую мировую войну для создания дымовых завес.
 
Профессии двуокиси
В 1908 г. в США и Норвегии началось изготовление белил не из соединений свинца и цинка, как делалось прежде, а из двуокиси титана. Такими белилами можно окрасить в несколько раз большую поверхность, чем тем же количеством свинцовых или цинковых белил. К тому же у титановых белил больше отражательная способность, они не ядовиты и не темнеют под действием сероводорода. В медицинской литературе описан случай, когда человек за один раз «принял» 460 г двуокиси титана! (Интересно, с чем он ее спутал?) «Любитель» двуокиси титана не испытал при этом никаких болезненных ощущений. Двуокись титана входит в состав некоторых медицинских препаратов, в частности мазей против кожных болезней.
Однако не медицина, а лакокрасочная промышленность потребляет наибольшие количества ТiO2. Мировое производство этого соединения намного превысило полмиллиона тонн в год. Эмали на основе двуокиси титана широко используют в качестве защитных и декоративных покрытий по металлу и дереву в судостроении, строительстве и машиностроении. Срок службы сооружений и деталей при этом значительно повышается. Титановыми белилами окрашивают ткани, кожу и другие материалы.
Двуокись титана входит в состав фарфоровых масс, тугоплавких стекол, керамических материалов с высокой диэлектрической проницаемостью. Как наполнитель, повышающий прочность и термостойкость, ее вводят в резиновые смеси. Однако все достоинства соединений титана кажутся несущественными на фоне уникальных свойств чистого металлического титана.

Элементный титан

В 1925 г. голландские ученые ван Аркель и де Бур иодидным способом (о нем — ниже) получили титан высокой степени чистоты— 99,9%. В отличие от титана, полученного Хантером, он обладал пластичностью; его можно было ковать на холоде, прокатывать в листы, ленту, проволоку и даже тончайшую фольгу. Но даже не это главное.
Исследования физико-химических свойств металлического титана приводили к почти фантастическим результатам.
Оказалось, например, что титан, будучи почти вдвое легче железа (плотность титана 4,5 г/см3), по прочности превосходит многие стали. Сравнение с алюминием тоже оказалось в пользу титана: титан всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее и, что особенно важно, он сохраняет свою прочность при температурах до 500°С (а при добавке легирующих элементов —до 650°С), в то время как прочность алюминиевых и магниевых сплавов резко падает уже при 300° С.
Титан обладает и значительной твердостью: он в 12 раз тверже алюминия, в 4 раза — железа и меди. Еще одна важная характеристика металла — предел текучести. Чем он выше, тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам, тем дольше они сохраняют свои формы и размеры. Предел текучести у титана почти в 18 раз выше, чем у алюминия.
В отличие от большинства металлов титан обладает значительным электросопротивлением: если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия — 60, железа и платины—15, а титана — всего 3,8. Вряд ли нужно объяснять, что это свойство, как и немагнитность титана, представляет интерес для радиоэлектроники и электротехники.
Замечательна устойчивость титана против коррозии. На пластинке из этого металла за 10 лет пребывания в морской воде не появилось и следов коррозии.
Из титановых сплавов сделаны несущие винты современных тяжелых вертолетов. Рули поворота, элероны и некоторые другие ответственные детали сверхзвуковых самолетов тоже изготовлены из этих сплавов. На многих химических производствах сегодня можно встретить целые аппараты и колонны, выполненные из титана.

Как получают титан

Цена — вот что еще тормозит производство и потребление титана. Собственно, высокая стоимость — не врожденный порок титана. В земной коре его много — 0,63%. Все еще высокая цена титана — следствие сложности извлечения его из руд. Объясняется она высоким сродством титана ко многим элементам и прочностью химических связей в его природных соединениях. Отсюда сложности технологии. Вот как выглядит магниетермический способ производства титана, разработанный в 1940 г. американским ученым В. Кроллем.
Двуокись титана с помощью хлора (в присутствии углерода) переводят в четыреххлористый титан:
 
TiO2+C+2Cl2 TiCl4+CО2.
Процесс идет в шахтных электропечах при 800—1250° С. Другой вариант — хлорирование в расплаве солей щелочных металлов NaCl и КСl. Следующая операция (в одинаковой мере важная и трудоемкая) — очистка TiCl4 от примесей — проводится разными способами и веществами. Четыреххлористый титан в обычных условиях представляет собой жидкость с температурой кипения 136° С.
Разорвать связь титана с хлором легче, чем с кислородом. Это можно сделать с помощью магния по реакции
 
TiCl4+2Mg Ti+2MgCl2.
 
Эта реакция идет в стальных реакторах при 900° С. В результате образуется так называемая титановая губка, пропитанная магнием и хлоридом магния. Их испаряют в герметичном вакуумном аппарате при 950° С, а титановую губку затем спекают или переплавляют в компактный металл.
Натриетермический метод получения металлического титана в принципе мало чем отличается от магниетермиче-ского. Эти два метода наиболее широко применяются в промышленности.
Для получения более чистого титана и поныне используется иодидный метод, предложенный ван Аркелем и де Буром. Металлотермический губчатый титан превращают в иодид TiI4, который затем возгоняют в вакууме. На своем пути пары иодида титана встречают раскаленную до 1400° С титановую проволоку. При этом иодид разлагается, и на проволоке нарастает слой чистого титана. Этсф метод производства титана малопроизводителен и дорог, поэтому в промышленности он применяется крайне ограниченно. Несмотря на трудоемкость и энергоемкость производства титана , оно уже стало одной из важнейших подотраслей цветной металлургии .
Статья на тему Титан история

Топовые страницы