Использование алюминиевых руд

Использование алюминиевых руд

Алюминиевые руды, как известно, иногда содержат, кроме алюминия, в значительном количестве кремний, железо, титан, калий, натрий, кальций, а также в небольшом количестве цирконий, хром, фосфор, галлий, ванадий и некоторые другие элементы. Однако далеко не все из этих элементов в настоящее время извлекаются из алюминиевых руд и используют для нужд народного хозяйства.

Наиболее полно используют апатито-нефелиновую породу, из которой получают удобрения, глинозем, соду, поташ, цемент и некоторые другие продукты; отвалов почти нет.

При переработке бокситов по способу Байера или спеканием в отвале еще остается много красного шлама, рациональное использование которого заслуживает большого внимания.

Ранее говорилось о том, что для получения 1 т алюминия необходимо затратить много электроэнергии, составляющей пятую часть себестоимости алюминия. В табл. 55 приведена калькуляция себестоимости 1 т алюминия. Из данных, приведенных в таблице, следует, что важнейшими составляющими себестоимости являются сырье и основные материалы, причем на долю глинозема падает почти половина всех расходов. Следовательно, снижение себестоимости алюминия должно в первую очередь идти в направлении уменьшения расходов на производство глинозема.

Теоретически на 1т алюминия необходимо затратить 1,89 т глинозема. Превышение этой величины при фактическом расходе является следствием потерь главным образом от распыления. Эти потери можно уменьшить на 0,5—0,6% путем автоматизации загрузки глинозема в ванны. Снижение себестоимости глинозема можно достичь сокращением потерь на всех стадиях его производства, особенно в отвальном шламе, при транспортировке алюминатных растворов и гидроокиси, а также во время кальцинации глинозема; за счет экономии, полученной от лучшего использования отработанного пара (из самоиспарителей) и полного использования тепла отходящих газов. Это особенно важно для автоклавного способа, расходы на пар в котором значительны.

Внедрение непрерывного выщелачивания и выкручивания на; передовых глиноземных заводах позволило автоматизировать многие операции, что способствовало снижению расхода пара, электроэнергии, повышению производительности труда и снижению себестоимости алюминия. Однако в этом направлении можно сделать еще многое. Не отказываясь от дальнейших поисков высокосортных бокситов, переход на которые резко сократит стоимость глинозема, следует искать пути комплексного использования железистых бокситов и красных шламов в черной металлургии. В качестве примера может служить комплексное использование апатито-нефелиновых пород.

Расходы на фтористые соли составляют 8%. Снизить их можно путем тщательного отвода газов от электролитных ванн улавливания из них фтористых соединений. Анодные газы, отсасываемые из ванны, содержат до 40мг/м3фтора, около 100мг/м3 смолы и 90мг/м3 пыли (AlF3, Al2O3, Na3AlF6). Эти газы нельзя выбрасывать в атмосферу, так как они содержат ценные вещества, кроме того, они ядовиты. Их необходимо очищать от ценной пыли, а также обезвреживать во избежание отравления атмосферы цеха и близлежащих к заводу районов. В целях очистки газы промывают слабыми растворами соды в башенных газоочистителях (скрубберах).

При совершенной организации процессов очистки и обезвреживания создается возможность вернуть в производство часть фтористых солей (до 50%) и тем самым снизить себестоимость алюминия на 3—5%.

Значительное снижение себестоимости алюминия может быть достигнуто за счет применения более дешевых источников электроэнергии и быстрого повсеместного внедрения более экономичных полупроводниковых преобразователей тока( особенно, кремниевых), а также за счет сокращения расхода электроэнергии непосредственно на электролиз. Последнее может быть достигнуто путем конструирования более совершенных ванн с меньшей потерей напряжения во всех или в отдельных их элементах, а также путем подбора более электропроводных электролитов (сопротивление криолита слишком велико и огромное количество электроэнергии переходит в избыточное тепло, которое пока невозможно рационально использовать). И не случайно, что ванны с обожженными анодами начинают находить все большее и большее применение, так как расход электроэнергии на этих ваннах значительно ниже.

Большую роль в снижении расхода электроэнергии играет обслуживающий персонал электролизных цехов. Поддержание нормального межполюсного расстояния, содержание в чистоте электрических контактов в различных местах ванны, снижение количества и продолжительности анодных эффектов, поддержание нормальной температуры электролита, внимательное наблюдение за составом электролита дают возможность значительно снизить расход электроэнергии.

Передовые бригады электролизных цехов алюминиевых заводов изучив теоретические основы процесса и особенности обслуживаемых ими ванн, тщательно наблюдая за ходом процесса, имеют возможность увеличить количество получаемого металла на единицу расходуемой электроэнергии при отличном его качестве и, следовательно, повысить эффективность производства алюминия.

Важнейшим фактором снижения себестоимости и повышения производительности труда является механизация трудоемких процессов в электролизных цехах алюминиевых заводов. В этой области на отечественных алюминиевых заводах за последние десятилетия достигнуты значительные успехи: механизировано извлечение алюминия из ванн; внедрены производительные и удобные механизмы для пробивки корки электролита и извлечения и забивки штырей. Однако нужно и можно в большей степени механизировать и автоматизировать процессы на алюминиевых заводах. Этому способствует дальнейшее увеличение мощности электролизеров, переход от периодических процессов к непрерывным.

В последние годы комплексное использование алюминиевых руд улучшилось в связи с тем, что некоторые алюминиевые заводы приступили к извлечению из отходов окислов ванадия и металлического галлия.

Галлий был открыт в 1875 г. спектральным методом. За четыре года , до этого Д. И. Менделеев с большой точностью предсказал его основные свойства (назвав экаалюминием). Галлий имеет серебристо-белый цвет и низкую температуру плавления (+30° С). Небольшой кусочек галлия может быть расплавлен на ладони. Наряду с этим температура кипения галлия довольно высока (2230°С), поэтому его используют для высокотемпературных термометров. Такие термометры с кварцевыми трубками применимы до 1300° С. По твердости галлий близок к свинцу. Плотность твердого галлия 5,9 г/см3, жидкого 6,09 г/см3.

Галлий рассеян в природе, богатые им минералы неизвестны. Он встречается в сотых и тысячных долях процента в алюминиевых рудах, цинковых обманках и золе некоторых углей. Смолы газовых заводов иногда содержат до 0,75% галлия.

По ядовитости галлий значительно превосходит ртуть и мышьяк, поэтому все работы по его извлечению следует проводить, соблюдая тщательную гигиену.

В сухом воздухе при обычных температурах галлий почти не окисляется: при нагревании он энергично соединяется с кислородом, образуя белый окисел Ga2О3. Наряду с этим окислом галлия при определенных условиях образуются и другие его окислы (GaO и Ga2О). Гидроокись галлия Ga(OH)3 амфотерна и поэтому легко растворима в кислотах и щелочах, с которыми образует галлаты, близкие по свойствам к алюминатам. В связи с этим при получении глинозема из алюминиевых руд галлий вместе с алюминием переходит в растворы в затем сопутствует ему во всех последующих операциях. Некоторая повышенная концентрация галлия наблюдается в анодном сплаве при электролитическом рафинировании алюминия, в оборотных алюминатных растворах при производстве глинозема по способу Байера и в маточных растворах, остающихся после неполной карбонизации алюминатных растворов.

Поэтому, не нарушая схемы переделов, в глиноземных и рафинировочных цехах алюминиевых заводов, можно организовать извлечение галлия. Оборотные алюминатные растворы для извлечения галлия можно периодически карбонизировать в два приема. Вначале при медленной карбонизации осаждают примерно 90% гидроокиси алюминия и отфильтровывают раствор, который затем карбонизируют повторно для того, чтобы осадить в виде гидроокисей галлий и оставшийся еще в растворе алюминий. Полученный таким путем осадок может содержать до 1,0% Ga2О3.

Значительную часть алюминия можно осадить из алюминатного маточного оборотного раствора в виде фтористых солей. Для этого в алюминатный раствор, содержащий галлий, примешивают плавиковую кислоту. При рН<2,5 из раствора осаждается значительная часть алюминия в виде фторида и криолита (Na3AlF6). Галлий и часть алюминия остаются в растворе.

При нейтрализации кислого раствора содой до рН = 6, осаждаются галлий и алюминий.

Дальнейшего отделения алюминия от галлия можно достичь, обрабатывая алюминиево-галлиевые гидратные осадки в автоклаве известковым молоком, содержащим небольшое количество едкого натра; при этом галлий переходит в раствор, а основная часть алюминия остается в осадке. Затем галлий осаждают из раствора углекислым газом. Полученный осадок содержит до 25% Ga2О3. Этот осадок растворяют в едком натре при каустическом отношении 1,7 и обрабатывают Na2S для очистки от тяжелых металлов, особенно от свинца. Очищенный и осветленный раствор подвергают электролизу при 60—75° С, напряжении 3—5 В и постоянном перемешивании электролита. Катоды и аноды должны быть сделаны из нержавеющей стали.

Известны и другие способы концентрации окиси галлия из алюминатных растворов. Так, из остающегося после электролитического рафинирования алюминия по трехслойному методу анодного сплава, содержащего 0,1—0,3% галлия, последний может быть выделен путем обработки сплава горячим раствором щелочи. При этом алюминий и галлий переходят в раствор, а медь и железо остаются в осадке.

Для получения чистых соединений галлия используют способность хлорида галлия растворяться в эфире.

Если в алюминиевых рудах присутствует ванадий, он будет постоянно накапливаться в алюминатных растворах и при содержании более 0,5 г/л V2O5 выпадать с гидратом алюминия при карбонизации в осадок и загрязнять алюминий. Для очистки от ванадия маточные растворы упаривают до плотности 1,33 г/см3 и охлаждают до 30° С, при этом выпадает шлам, содержащий более 5% V2O5, наряду с содой и другими щелочными соединениями фосфора и мышьяка, из которых он может быть выделен сначала сложной гидрохимической переработкой, а затем электролизом водного раствора.

Расплавление алюминия из-за его большой теплоемкости и скрытой теплоты плавления (392Дж/г) требует больших расходов энергии. Поэтому заслуживает распространения опыт электролизных заводов, начавших получение ленты и катанки непосредственно из жидкого алюминия (без разливки в слитки). Кроме того, большой экономический эффект может дать получение из жидкого алюминия в литейных цехах электролизных заводов различных сплавов массового потребления, а также заготовок из них, предназначенных для обработки давлением.

 

Статья на тему Использование алюминиевых руд