Физика Физика наука о природе Фотоэффект (виды формула Эйнштейна)

Фотоэффект (виды формула Эйнштейна)

Фотоэффект это испускание электронов в результате действия на вещество (твердые жидкие) солнечного света, а также электромагнитного излучения, это происходит из за передачи части энергии фотонов электронам этого вещества.

Разделяется на два основных вида: внешний и внутренний.

Внешний фотоэффект это поглощение фотонов который сопровождается вылетом электронов за пределы этого вещества.

Внутренний фотоэффект — здесь электроны остаются в данном веществе и изменяют свое энергетическое состояние.

Примером фотоэффекта служит солнечная батарея, в результате действия солнечного света образуется постоянный электрический ток.

Фотоэффект

Что такое фотоэффект

Свет, падая на поверхность металла и поглощаясь в нем, вызывает эмиссию электронов. Это явление называется фотоэлектрическим эффектом(сокращенно — фотоэффектом).

Фотоэффект можно показать следующим опытом: хорошо очищенной и укрепленной на электроскопе Э цинковой пластинке П (рис. ) предварительно сообщают отрицательный заряд (избыток электронов облегчает их эмиссию).

И действуют на нее излучением электрической дуги или ртутной лампы. При этом пластинка быстро разряжается, что наблюдается по электроскопу.

Кто открыл фотоэффект

В 1887 году при работе Генрихом Герцем с открытым резонатором было выяснено , что освещение на цинковые пластинки разрядника ультрафиолетом, прохождение искры облегчается.

Основные закономерности фотоэффекта были установлены А. Г. Столетовым в 1890 г. В 1905 г. Эйнштейн показал, что фотоэффект хорошо объясняется, если предположить, что свет поглощается прерывно такими же порциями, какими он по предположению Планка испускается.

Эти элементарные порции или кванты света Эйнштейн назвал фотонами.

Более подробные характеристики фотоэффекта были получены позже, пользуясь вакуумной камерой Т (рис. , а) в которую помещались металлические электроды А и К. 

Излучение И пропускалось через окно О, закрытое кварцевой пластинкой Я, измерялся фототок Iфобразуемый потоком электронов, испускаемых катодом (гальванометр Г) и напряжение между электродами (вольтметр V), которое регулировалось потенциометром Р. 

При постепенном увеличении напряжения фототок Iф нарастал, достигая при некотором его значении максимальной величины — фототока насыщения Iф.н

При обратной полярности приложенного напряжения фототок постепенно убывал и при некотором его значении U3 снижался до нуля (рис. , б).

Наличие фототока при отрицательном напряжении между электродами показывает, что фотоэлектроны имеют начальную скорость и кинетическую энергию, которая позволяет им преодолевать противодействие сил электрического поля между электродами.

В результате были установлены три закона фотоэффекта.

Интересный факт: с 1839 года многие ученые занимались изучением фотоэффекта. Но только лишь в 1905 году данное явление смог объяснить Альберт Эйнштейн, за что через 16 лет был награжден Нобелевской премией.

Законы фотоэффекта

Законы фотоэффекта

  1. Первый закон фотоэффекта (закон Столетова). Фототок насыщения Iф(т. е. наибольшее количество фотоэлектронов, испускаемое катодом в единицу времени) прямо пропорционален лучистому потоку Фэ, падающему на металл: IфkФэ, где — коэффициент пропорциональности, который зависит как от природы металла, так и от длины волны излучения и называется чувствительностью к фотоэффекту.
  2. Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности.
  3. Третий закон фотоэффекта. Фотоэффект вызывается только под действием излучения, длина волны которого меньше некоторой предельной длины волны λкхарактерной для каждого металла и называемой красной границей фотоэффекта.

При длине волны большей, чем предельная λк независимо от интенсивности излучения, фотоэффект не происходит.

Фотоэффект происходит в результате поглощения фотонов свободными электронами металла. Каждый фотон взаимодействует с одним электроном (рис. 2).

При этом электрон получает дополнительную энергию, равную энергии фотона Еф. Если эта энергия меньше работы выхода А электрона из металла: 

Еф < А

то фотоэффекта не происходит (усиливается тепловое движение электрона).

Если энергия фотона равна или больше работы выхода

Еф А

то фотоэффект происходит (работа выхода зависит от природы металла и одинакова как при фотоэлектронной, так и термоэлектронной эмиссии).

При этом, если энергия фотона превышает работу выхода, то разность между ними переходит в кинетическую энергию 2э/2 фотоэлектрона.

Энергия фотона по Планку Еф = hvследовательно,

hv = A + (2э/2)

Это уравнение называется уравнение Эйнштейна для фотоэффекта.

Из уравнения следует, что 2э/2 = hv — A, т.е. энергия и скорость фотоэлектронов зависят только от частоты излучения и с повышением ее увеличивается.

Это объясняет II закон фотоэффекта.

Красная граница фотоэффекта

В предельном случае hvK = Aгде. vK — наименьшая частота, при которой происходит фотоэффект vк A/h.

Соответствующая ей длина волны (красная граница фотоэффекта):

λк = h0/A,

где A выражена в эргах.

Это объясняет III закон фотоэффекта.

Таблица фотоэффекта металлов

Данные о длине волны красной границы фотоэффекта и о работе выхода для некоторых металлов приведены в таблице.

Металл λкр в ммк А эв
Серебро 260 4,75
Вольфрам 276 4,50
Цинк 290 4,20
Натрий 550 2,25
Цезий 620 2,0

Количество фотоэлектронов, испускаемых металлом в единицу времени (или фототок насыщения), пропорционально количеству фотонов, падающих на металл в единицу времени, или лучистому потоку. Этим объясняется закон фотоэффекта.

Чем объясняется фотоэффект

Практически только небольшая доля от всех падающих на металл фотонов вызывает фотоэффект, причем она зависит как от природы металла (например, у щелочно-земельных металлов и их окисей она выше, чем у других металлов), так и от энергии фотонов: с повышением ее она возрастает.

В связи с этим чувствительность металла к фотоэффекту возрастает с уменьшением длины волны.

У ряда веществ имеются резко выделяющиеся максимумы чувствительности к фотоэффекту в определенных узких интервалах длины волны.

Это явление называется избирательным фотоэффектом.

Вакуумный фотоэлемент

Вакуумный фотоэлементВакуумный фотоэлемент (рис. 3, а) состоит из стеклянной вакуумной колбы Б с цоколем Ц со штырьками для установки в гнезда ламповой панельки.

Внутренняя поверхность колбы, за исключением окошка, через которое проходит свет, покрыта фоточувствительным слоем.

Слой соединен с выводом в цоколе и служит катодом К лампы. В центре колбы на ножке помещается второй электрод — анод А в виде кольца или сетки.

Фотоэлемент включают последовательно в цепь источника постоянного напряжения, величина которого обеспечивает получение в цепи тока насыщения (рис3, б).

Чувствительность вакуумных фотоэлементов измеряется током насыщения в микроамперах, приходящимся на 1 лм светового потока, и в области видимого излучения имеет порядок 10—15 мка/лм.

Умножители фотоэффекта

Для усиления фототока применяют фотоэлектронные умножители(ФЭУ) — приборы, в которых, кроме фотоэффекта, используется явление вторичной эмиссии электронов.

Умножитель (рис. 3) представляет вакуумный фотоэлемент с несколькими промежуточными электродами, называемыми эмиттерами, или динодами, которые покрыты веществом, легко испускающим при ударе электроны. Свет, падая на катод К, вызывает фотоэлектронную эмиссию.

Электроны, ускоряясь электрическим полем, создаваемым напряжением U1 источника питания (рис. 3), падают на первый эмиттер и выбивают из него вторичные электроны уже в большем количестве. Эти электроны, ускоряясь, падают на второй эмиттер, количество их увеличивается и т. д.

Постепенно усиливающий поток электронов падает на последний электрод — анод и создает ток через сопротивление R, включенное в цепь анода. Напряжение с него передается на приемное устройство, обычно — электронно ламповый усилитель и измерительный прибор.

Если коэффициент усиления электронного тока на одном электроде п, а число их т, то общее усиление в умножителе k — пт и соответственно ток Iа в анодной цепи Iа = Iк птгде Iк — ток фотокатода.

Усиление может достигать сотен тысяч. Напряжение на эмиттеры подается от высоковольтного выпрямителя (500—1000 в) через делитель напряжения на сопротивлениях.

Преобразователь состоит из стеклянного сосуда К с высоким вакуумом, в котором имеется полупрозрачный фотокатод ФК, против него расположен флуоресцирующий экран Э. 

Между ними находится система электродов Н—Л, ускоряющая и фокусирующая электроны подобно электродам в электроннолучевой трубке. К электродам подводится постоянное высокое напряжение U.

Оптическое изображение предмета с помощью линзы проектируется на фотокатод ФК (при рентгеновском изображении последнее отбрасывается непосредственно на фотокатод, который в этом случае покрывается со стороны падающих лучей флуоресцирующим слоем).

Эмиссия электронов с фотокатода прямо пропорциональна его освещенности, поэтому плотность потока электронов отражает характер изображения на фотокатоде.

Электроны ускоряются электрическим полем между электродами, падая на экран эт на нем вторичное флуоресцирующее изображение предмета.

Оно может быть сделано значительно более ярким, чем изображение, падающее на фотокатод, а также наблюдаться увеличенным с помощью окуляра О.

Фотоэффект в полупроводниках

Фотоэффектом в наиболее широком значении называется отрыв электронов от атомов или молекул, происходящий в результате поглощения фотонов электромагнитного излучения.

Если процесс завершается выходом электронов за пределы вещества, то фотоэффект называется внешним, если электроны остаются внутри вещества — то внутренним.

Внешний фотоэффект характерен для металлов. Внутренний фотоэффект происходит в полупроводниках.

При этом может иметь место повышение их электропроводности (такой полупроводник называется фоторезистором) или — при определенных условиях — образование фотоэлектродвижущей силы.

Это используется в фотоэлементах с запирающим слоем.

К явлениям внутреннего фотоэффекта относится также первичная ионизация газа, происходящая при поглощении оптического излучения, а также ионизация любого вещества под действием рентгеновского и радиоактивного гамма излучения.

Вентильный (с запирающим слоем) полупроводниковый фотоэлемент состоит из двух слоев электронного и дырочного полупроводников (или из слоя дырочного полупроводника, нанесенного на металл), между которыми образуется электронно-дырочный переход или запирающий слой.

В результате фотоэффекта, т. е. отрыва электронов, в полупроводниках образуются носители зарядов: электроны и дырки.

Те из них, которые являются неосновными для данного полупроводника, проходят через запирающий слой в соседний полупроводник.

Таким образом происходит разделение зарядов разного знака и между слоями полупроводника образуется разность потенциалов порядка 0,1—0,15 в. В связи с этим фотоэлемент не требует источника питания .

Селеновый фотоэлемент

Селеновый фотоэлементСеленовый фотоэлемент (рис. 4 , а) состоит из стальной пластинки 1. которая служит одним из электродов.

Она покрыта тонким слоем селена с дырочной проводимостью (р). Поверх селена нанесен тончайший слой серебра, который служит вторым электродом.

Атомы серебра проникают в прилежащий к нему слой селена и придают ему электронную проводимость (n).

Между верхним и нижним слоями селена образуется электронно-дырочный переход или запирающий слой, в котором возникает контактная разность потенциалов (КРП), направленная от п к р слою (рис. 4 , б). 

Фотоэлемент заключен в пластмассовую открытую сверху коробку 4, на которой укреплены два зажима 5, соединенных с электродами.

Применение фотоэффекта

Фотоэффект используется при устройстве электронно-оптических преобразователей(электронных преобразователей оптического изображения).

Прибор предназначается для усиления яркости изображения при рентгеноскопии, для преобразования изображения, полученного с помощью инфракрасного излучения в видимое изображение и т. п.

Фотоэлектрический эффект используется в приборах, называемых фотоэлементами.

Которые в настоящее время получили широкое применение в различных областях техники (телевидение, фототелеграф, звуковое кино и др.) и особенно в технике световых измерений.

Фотохимическое действие света

При поглощении света атомы или молекулы вещества получают дополнительную энергию.

В определенных случаях при этом атом или молекула получают возможность вступать в такие химические реакции, которые не происходят при их обычном состоянии, такие атомы и молекулы называются активированными

Активация молекулы описывается уравнением

A + hv A*,

где А — молекула в основном состоянии, hv — энергия фотона, поглощенного молекулой, и А*—активированная молекула.

Реакции, протекающие с участием активированных атомов или молекул, называются фотохимическими.

Примером фотохимической реакции служит реакция разложения светом бромистого серебра, на которой основана фотография.

Основной закон фотохимической реакцииколичество прореагировавшего вещества прямо пропорционально количеству поглощенной энергии излучения. 

Другими словами: количество Q прореагировавшего вещества прямо пропорционально поглощенному лучистому потоку Фэ и времени его действия:

kФэt,

где — есть коэффициент, зависящий от природы происходящей реакции и длины волны излучения.

Фотохимическую реакцию может вызывать только излучение, энергия фотонов которого больше некоторой энергии D, необходимой для возбуждения фотохимического процесса (энергия активации):

hv ≥ D.

Поэтому более химически активным является коротковолновое излучение (например, в области оптического— ультрафиолетовое), фотоны которого имеют большую энергию.

Фотохимические реакции являются первичным звеном многих биологических реакций.

Такова, например, реакция фотосинтеза растениями крахмала из активированных молекул углекислоты и воды:

СО2 + hv → СО2*п СО2* + п Н2О → (СН2О)n + пO2

К фотохимическим реакциям относятся реакции синтеза многих витаминов.

К этим реакциям относится также реакция разложения зрительного пурпура в сетчатке глаза.

При поглощении фотона hv молекула родопсина активируется и затем распадается на белок Р и ретинен r — вещество, близкое по составу к витамину А.

При поглощении света может происходить также изменение связей между частицами в сложной, например, белковой молекуле, что вызовет соответствующее изменение ее структуры. Это также относится к фотохимическим процессам.

Часто задаваемые вопросы и ответы?

Что такое фотоэффект простыми словами?

Это явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества.

Как объяснить фотоэффект?

Это освобождение электронов, находящихся в веществе под действием коротковолнового электромагнитного излучения.

В каком случае возникает фотоэффект?

Возможен лишь при наличии связи электрона с атомом, молекулой или конденсированной (твердой или жидкой) средой.

Топовые страницы

  1. Азот аммиак свойства
  2. Ряд активности металлов
  3. Концентрация растворов
  4. Хромирование