Работа асинхронного двигателя

РАБОТА АСИНХРОННОГО ДВИГАТЕЛЯ


Работа асинхронного двигателяПод влиянием подведенного к статору напряжения сети U1 (рис. 10-19) в его обмотке протекает ток I1мгновенное направление которого показано соответственно моменту а (рис. 10-2). Этот ток создает вращающийся магнитный поток Ф, замыкающийся через статор и ротор. Поток создает в обеих обмотках э. д. с. Е1 и Е2,как в первичной и вторичной обмотках трансформатора. Таким образом, асинхронный двигатель подобен трехфазному трансформатору, в котором э. д. с. создаются вращающимся магнитным потоком. Пусть поток вращается в направлении движения стрелки часов. Под влиянием э. д. с. Е2 в обмотке направление которого показано на ротора пойдет ток I2, рис. 10-19 в предположении, что он совпадает по фазе с Е2.

Рис. 10-19. Работа асинхронного двигателя при cos Ψ2 = 1.

Взаимодействие тока I2 и потока Ф создает электромагнитные силы F, приводящие ротор во вращение, вслед за вращающимся потоком. Таким образом, асинхронный двигатель представляет собой трансформатор с вращающейся, вторичной обмоткой и способный поэтому превращать электрическую мощность Е2I2 cos Ψ2 в механическую.

Ротор всегда отстает от вращающегося магнитного потока, так как только в этом случае может возникать э, д. с. E2, а следовательно, ток I2 и силы F. Чтобы изменить направление вращения ротора, следует изменить направление вращения потока. Для этого меняют местами два любых провода, подводящих ток от сети к статору. В этом случае меняется порядок следования фаз ABC на АСВ или ВАС и поток вращается в обратную сторону.

СКОЛЬЖЕНИЕ РОТОРА

Ротор асинхронного двигателя всегда должен отставать от вращающегося магнитного потока. Скорость вращения потока принято означать п1, она постоянна, так как р = const и f1 = const. Скорость вращения ротора можно обозначить п2. Величина называется скольжение м.

Теоретически скольжение меняется от 1 до 0 или от 100% до 0, так как при неподвижном роторе в первый момент пуска п2 = 0, а если вообразить, что ротор вращается синхронно с потоком, п2 п1. Чем больше нагрузка на валу, тем больший тормозной момент должен уравновеситься большим вращающим моментом. Последнее возможно только при увеличении I2, а значит, и Е2Как будет показано ниже, Е2увеличивается при уменьшении n2, т. е. при увеличении s. Таким образом, при увеличении нагрузки на валу скорость ротора п2 уменьшается. Скольжение при номинальной нагрузке Sн у асинхронных двигателей равно от 1 до 6%; меньшая цифра относится к мощным двигателями

ЧАСТОТА Э. Д. С. И ТОКА В ОБМОТКЕ РОТОРА

Магнитный поток вращается со скоростью п1, ротор — со скоростью п2Частота э. д. с. и тока в роторе, очевидно, пропорциональна скорости вращения потока относительно ротора, т. е. величине п1 — п. Тогда

f2 = (p(п1))/60 = pn1s/60 = f1s

При неподвижном роторе f2 = f• 1 f1 если ротор вращается синхронно, то f2 f• = 0. При номинальной скорости вращения, т. е. при sH ≈ 2—4%, частота f2 очень мала: f2 = f1= 500,02÷500,04, т. е. 1—2 гц.

ЭЛЕКТРОДВИЖУЩИЕ СИЛЫ ОБМОТОК СТАТОРА И РОТОРА

Если ротор неподвижен, то в обмотках статора и ротора, как в первичной и вторичной обмотках трансформатора, наводятся э. д. с:

 Е1 = 4,44f1ɯ1ФмƦ1

Е2 = 4,44f1ɯ2ФмƦ2

Отличие только в том, что коэффициентами Ʀ1 и Ʀ2 приходится учитывать особенности обмоток, распределенных по цилиндрической поверхности статора и ротора. При вращении ротора его э. д. с. все время меняется, так как f2 = f1s. Тогда э. д. с. вращающегося ротора

Е2 = 4,44f2ɯ2ФмƦ2

Эту э. д. с. принято выражать через э. д. с. неподвижного ротора

E2s/E2 = f2/f1 = f1s/f1 = s

или

E2s E2s

Следовательно, э. д. с. ротора сильно меняется в процессе работы двигателя. При s = 1, E2s = Е2а при s = 0, E2s = 0.

СОПРОТИВЛЕНИЯ В ОБМОТКЕ РОТОРА

Как и в трансформаторе, часть потока статора замыкается по путям рассеяния, т. е. вокруг проводов статора, не заходя в ротор (рис. 10-19). Известно, что эти потоки обусловливают реактивное (индуктивное) сопротивление обмотки x1. Такие же потоки рассеяния существуют и вокруг проводов обмотки ротора, когда в ней протекает ток. Ими обусловлено реактивное сопротивление ротора x2.

При неподвижном роторе

x2 = ω1L2 = 2πf1L2 

При вращающемся роторе

x2 = 2πf2L= 2πf1sL2

Отсюда следует, что реактивное сопротивление ротора непрерывно и сильно меняется при изменении режима работы двигателя от величины x2s = х2 • 1 = х2 при неподвижном роторе до величины x2s = х2 • 0 = 0, если бы ротор вращался синхронно.

В двигателях нормального исполнения изменением активного сопротивления ротора при изменении частоты от 50 гц до 0 можно пренебречь и считать r2 = const.

ТОК В ОБМОТКЕ РОТОРА

Из сказанного выше об изменении э. д. с. и реактивного сопротивления обмотки ротора можно заключить, что ток в роторе I2 = E2s/√(r22 + x22s)

тоже меняется при изменении скорости вращения. Пусковой ток I2п должен быть велик и отставать от э. д. с. на большой угол Ψ2, так как Е2 велика, а реактивное сопротивление обмотки х2 обычно в 8—10 раз больше активного r2. При вращении ротора уменьшаются E2s и x2sВследствие этого уменьшаются ток I2и угол Ψ2Указанное обстоятельство очень важно, так как в этом существенная разница между трансформатором и асинхронным двигателем.

 

Статья на тему Работа асинхронного двигателя