Алюминирование

Алюминирование

Нанесение на поверхность металлических изделий покрытий из металлического алюминия или алюминия сплавов. К А. прибегают, чтобы защитить поверхность изделий  от  коррозии металлов, при необходимости — с декоративной целью. Покрытия создают одно- и многослойные (один из слоев — из металлического алюминия), к-рые могут быть анодированы (см. Аиодирование) или окрашены. Широко применяется диффузионное насыщение поверхности металлических изделий алюминием (см. Алитирование). Алюминирование осуществляют газопламенным и плазменным распылением металла (см. Газопламенные покрытия, Плазменные покрытия), плакированием, испарением металла в вакууме (см. Вакуумные покрытия). Различают также алюминирование горячее, электролитическое и А. нанесением алюминиевого порошка.
 
Горячее алюминирование, проводимое в ваннах с расплавленным металлом (так же, как и горячее цинкование), применяют в основном для нанесения покрытий на полосы и листы. По одному из методов горячего А. стальную полосу вначале нагревают в печи с окислительной средой до т-ры 450° С, с тем чтобы сжечь остатки смазочных масел и создать на поверхности изделия тонкую пленку окислов железа. Затем полоса поступает в печь с восстановительной средой, где при т-ре 730—800° С эти окислы восстанавливаются. После охлаждения в спец. зоне печи полосу пропускают через ванну с алюминиевым расплавом, охлаждают на воздухе и сматывают в рулон.
 
Для нагрева ванн используют силитовые стержни, через к-рые пропускают электрический ток. Есть также ванны с индукционными (посредством токов низкой частоты) и магнито-стрикционными нагревателями. Скорость движения полосы до 1 м/сек. Толщина покрытия (0,02—0,07 мм) определяется его назначением и регулируется скоростью движения полосы и т-рой расплава. Рулоны окончательно обрабатывают обычно в правильных машинах, иногда — в клетях для холодной прокатки (дрессировки). Для того, чтобы на поверхности изделий и расплавленного металла не образовывались окисные пленки, снижающие адгезию алюминия и основы, в металл вводят флюсы, процесс ведут в защитной среде или на поверхность изделия предварительно наносят промежуточные покрытия. При люминирование стальных изделий флюсами служат бура, хлористый аммоний, борная к-та,  борнокислая соль,   криолит с добавками хлористого алюминия, хлориды бария; материалами промежуточных покрытии — чаще всего кадмийоловоцинкникель.
 
Электролитическое алюминирование проводят её солевых расплавов, преимущественно при осаждении алюминия из электролита AlCl3 — NaCl — КСl в инертной среде или из электролита 2AlCI3 — NaCI с добавлением сотых долей моля свинца в защитной среде азота. Оптимальные т-ры электролитов составляют 130—160° С, катодная плотность тока для этих электролитов соответстве нно 0,1— 0,3 и 3—5 а/дм², выход металла по току — 90—100%. Покрытия получаются гладкие и плотные, однако скорость их нанесения относительно невелика — не более 20 мкм/час. Большей производительностью, чем электролитическое А., характеризуется алюминирование нанесением на поверхность изделий алюминиевого порошка из жидкой фазы, электростатическим и электрофоретическим способами.
 
Нанесение порошка из жидкой фазы осуществляют, напр., напылением раствора диэтилгидрида алюминия на изделие, нагретое до т-ры не менее 260° С.
Под воздействием тепла диэтилгидрид алюминия разлагается и продукт разложения — алюминий оседает на покрываемую поверхность. Толщину покрытия (0,5 мкм — 1 мм) регулируют т-рой нагрева. Скорость нанесения покрытия — 100 — 600 мкм/мин. Покрытие отличается высокой чистотой, значительной плотностью, хорошим сцеплением с поверхностью. Процесс проводят в инертной среде (из-за опасности воспламенения диэтилгидрида алюминия). Электростатический способ алюминирования основан на переносе отрицательно заряженных частиц алюминиевого порошка в электростатическом поле.
 
По этому способу на очищенную и увлажненную поверхность изделия (стальной полосы) наносят с помощью спец. устройства сухой порошок алюминия. Составные части этого   устройства — вибропитатель, комплект вибросит и источник электростатического поля (между изделием и прилегающим к нему ситом) напряженностью до 20 кв. Частицы алюминия, приобретая отрицательный заряд при прохождении через отрицательно   заряженное   сито, взаимно отталкиваются и равномерно осаждаются на алюминируемой поверхности. Потеряв заряд при контакте с изделием, порошок удерживается на его поверхности водяной пленкой. После нанесения покрытия изделие сушат в электрической радиационной печи при т-ре 350° С в течение минуты, затем покрытие уплотняют прокаткой и очищают.
 
На заключительной стадии изделие подвергают термической обработке: быстрому (порядка 15 сек) нагреву на воздухе до т-ры 500—600° С с последующим самопроизвольным охлаждением или медленному (в течение 15 ч) нагреву в печи до т-ры 450° С с последующим охлаждением на   воздухе.  Толщину   покрытия (0,05      — 1 мм) регулируют скоростью подачи порошка вибропитателем.  
Покрытия,    полученные электростатическим способом, имеют удовлетворительные св-ва,  однако процесс их нанесения громоздок. По технологическим возможностям, производительности, универсальности и экономической эффективности наибольшие преимущества имеет алюминирование испарением металла в вакууме . Структура и св-ва алюминиевых покрытий в значительной степени определяются способом их нанесения.
 
Так, структура вакуумных покрытий и покрытий, полученных горячим способом, подобна структуре отожженного алюминия. Структура покрытий, образуемых нанесением алюминиевого   порошка,   газопламенным и плазменным распылением, во многом обусловливается наличием окислов алюминия. У таких покрытий выше твердость, ниже электропроводность по сравнению с чистым алюминием. На эксплуатационные св-ва   алюминиевых  покрытий,   в частности на прочность сцепления и деформцруемость, влияет толщина переходного слоя (диффузионного слоя между поверхностью и покрытием), зависящая от т-р ы времени а. и термообработки, хим. состава изделия, а при горячем а и от состава расплава. Хорошими эксплуатационными св-вами  отли чаются алюминированные изделия с толщиной переходного слоя не более 5—7 мкм. При вакуумном а толщина переходного слоя, как правило , не превышает долей микрометра. При горячем а. толщину этого слоя можно уменьшить, вводя в ванну различные добавки (напр, 2—12%  Si). 
 
Добавки  по-разному влияют на внешний вид алюминиевых покрытий: добавки   висмута кальция, кремния и меди снижают отражательную способность покрытия, добавка никеля делает покрытие шероховатым без существенного уменьшения блеска, добавки бериллия, кальция, хрома, меди и марганца придают покрытию оттенок седины.
 
Покрытия из чистого алюминия достаточно стоики в воде и на воздухе, что обусловлено образованием на поверхности окисной пленки, защищающей металл от дальнейшего окисления. Алюминиевые покрытия устойчивее цинковых — примерно в шесть раз при одинаковой их массе и в 2,5 раза при одинаковой толщине. В атмосфере пром. предприятий стойкость горячеалюминиро-ванных изделий в 10 раз выше стойкости горячеоцинкованных, в горячей воде — в 15 раз. Алюминированные изделия сохраняют блеск до т-ры 470° С, отражая 85% тепла и света. Вакуумное алюминиевое покрытие в 15—20 раз повышает стойкость стали к газовой коррозии при т-ре 700—800° С.
 
Алюминирование дает возможность защищать от коррозии детали самолетов, ракет и автомобилей, сварные трубы, стенные и кровельные панели, обогревательные приборы, сельскохозяйственный инвентарь и инструменты, изделия бытового назначения. Алюминированную жесть используют взамен луженой в консервной промышленности. Экономическая эффективность А. основывается на его низкой себестоимости, на существенном повышении срока службы алюминированных изделий, прежде всего изделий из сталей и алюминиевых сплавов.
 

Лит.; Виткин А. И., Тейндл И, И. Металлические покрытия листовой и полосовой стали. М., 1971 Ройх И. Лм Колтунова Л. Н. Защитные вакуумные покрытия на стали. М., 1971.

Вы читаете, статья на тему алюминирование