Оглавление 65 66 67 68 69 — — — 270 

Свойства и применение водорода. Водород при обыкновенной температуре — бесцветный газ, не имеющий запаха. При температуре ниже минус 240° водород под давлением может быть превращен в бесцветную жидкость. Если быстро испарять эту жидкость, то получается твердый водород в виде прозрачных кристаллов, плавящихся при минус 259,4°.

Водород самый легкий из всех газов, он почти в 141/2 раз легче воздуха. Литр водорода при нормальных условиях весит только 0,09 г. В воде водород растворим очень мало, но растворяется

Схема строения молекулы водорода

Рис 57 Схема строения молекулы водорода

в значительном количестве в некоторых металлах, например в палладии, платине и др. Один объем палладия может растворить до 900 объемов водорода.

Молекула водорода состоит из двух атомов, связь между которыми осуществляется парой электронов, вращающихся вокруг ядер обоих атомов. Строение молекулы водорода (рис. 57) аналогично строению атома гелия, вследствие чего при обыкновенной температуре водород инертен. При более высоких температурах связь между атомами ослабляется и водород становится активным.

Из физических свойств водорода особенный интерес представляет его теплоемкость, которая при низких температурах значительно меньше, чем следовало бы ожидать на основании кинетической теории газов. Это явление объясняется существованием двух модификаций водорода, получивших название ортоводород и параводород. Обе модификации состоят из одних и тех же молекул Н2 и имеют одинаковые химические свойства, но их физические свойства, как, например, удельная теплоемкость, точки плавления и кипения и др., несколько различны. Причина различия заключается в том, что водородные ядра (протоны), входящие в состав молекул Н2 и обладающие собственным вращением вокруг своих осей, трёх частей ортоводорода и одной части параводорода, находящихся в равновесии друг с другом. Понижение температуры смещает равновесие в сторону образования параводорода, а так как его теплоемкость меньше теплоемкости ортоводорода, то с увеличением содержания параводорода в смеси общая ее темплоемкость уменьшается. Химические свойства водорода определяются способностью его атомов отдавать единственный имеющийся у них электрон и превращаться в положительно заряженные ионы. Однако полностью такое превращение не происходит, так как даже при взаимодействии водорода с наиболее активными металлоидами образуются не ионные, а полярные ковалентные связи. Иногда атомы водорода сами присоединяют электроны, переходя в отрицательно заряженные ионы Н с оболочкой инертного газа гелия. В виде таких ионов водород находится в соединениях с некоторыми наиболее активными металлами (К, Na, Са и др.). Эти соединения называются гидридами металлов и, в отличие от газообразных соединений водорода с металлоидами, представляют собой твердые кристаллические вещества (подробнее о гидридах смотри при описании соответствующих металлов). Если к струе водорода, выходящей из какого-нибудь узкого отверстия, поднести зажженную спичку, то водород загорается и горит несветящимся пламенем. Продуктом горения является вода:

2 + О2 = 2Н2О + 136,8 ккал

Горелка для гремучего газа

Рис. 58. Горелка для гремучего газа

При поджигании смеси двух объемов водорода с одним объемом кислорода соединение газов происходит почти мгновенно во всей массе смеси и сопровождается сильным взрывом. Поэтому такая смесь называется гремучим газом.

Вследствие выделения при горении водорода большого количества тепла температура водородного пламени довольно высока

(~1000°). Но особенно высокая температура, достигающая 2500—3000°, получается при введении в водородное пламя избытка кислорода. Для получения такого пламени пользуются специальной горелкой (рис. 58), состоящей из двух трубок разного диаметра, вставленных одна в другую. В пространство между стенками трубок впускают водород и зажигают его у выходного отверстия. После этого по внутренней трубке начинают осторожно вводить в водородное пламя струю кислорода. Оба газа смешиваются у отверстия горелки и дают очень горячее пламя, в котором легко расплавляются почти все металлы, даже самые тугоплавкие. Железная или стальная

проволока, внесенная в такое пламя, сгорает в нем, как в кислороде, разбрасывая во все стороны блестящие искорки. Если направить пламя на кусок извести, то он накаливается добела и испускает ослепительно яркий свет. Водородно-кислородным пламенем пользуются для плавления тугоплавких металлов, для так называемой автогенной сварки, для резания и сверления металлов пламенем.

При обыкновенной температуре водород с кислородом практически не взаимодействуют. Если смешать оба газа и оставить их в стеклянном сосуде, то и через несколько лет в сосуде нельзя обнаружить даже признаков воды. Если же смесь водорода с кислородом поместить в запаянный сосуд и держать в нем при 300°, то’уже через несколько дней образуется немного воды. При 500° водород полностью соединяется с кислородом за несколько часов, а при нагревании смеси до 700° происходит быстрый подъем температуры и реакция заканчивается мгновенно. Поэтому, чтобы вызвать взрыв смеси, нужно нагреть ее хотя бы в одном месте

до 700°

Отсутствие заметной реакции между водородом и кислородом при обыкновенной температуре объясняется тем, что в этих условиях скорость реакции чрезвычайно мала. Принимая, что с понижением температуры на каждые 10° скорость реакции уменьшается в два раза, нетрудно рассчитать, что если

при 300° заметное количество воды образуется лишь через 3 дня, то при обыкновенной температуре (20°) для этого потребовалось бы более двух миллионов лет.

Применение катализатора может сильно увеличить скорость взаимодействия водорода с кислородом. Внесем, например, кусочек платинированного (т. е. покрытого мелко раздробленной платиной) асбеста в смесь водорода с кислородом. Взаимодействие между газами настолько ускоряется, что через короткое время происходит взрыв.

При высокой температуре водород может отнимать кислород от многих соединений, в том числе от большинства металлических окислов, освобождая металл. Например, если пропускать водород над накаленной окисью меди, то происходит реакция

СuО + Н2 = Сu + Н2О

Процесс присоединения кислорода к металлу называется окислением, обратный же процесс, при котором от окисла отнимается кислород и таким образом снова освобождается металл, получил название восстановления.

Присоединение водорода к какому-нибудь веществу также называется восстановлением или гидрированием.

Не только водород, но и некоторые другие вещества, как, например, уголь, могут отнимать кислород от различных соединений. Все такие вещества называются восстановителями. Водород является одним из наиболее энергичных восстановителей.

Водород используется при синтезе ряда важнейших химических продуктов. Его применяют в огромных количествах для синтеза аммиака, идущего в свою очередь на производство азотной кислоты и азотных удобрений, для получения синтетического моторного топлива, для так называемой гидрогенизации жиров (превращение жидких растительных жиров в твердые), для синтеза спиртов (метилового и др.).

Водород используют также для восстановления некоторых цветных металлов из их окислов и для наполнения аэростатов. Жидким водородом (точка кипения —252,7°) пользуются иногда для получения низких температур.

66 67 68

Вы читаете, статья на тему Свойства и применение водорода