Страницы Список страниц 9 10 11 12 13 · · ·  32                    

Глава VIII

ТЕХНОЛОГИЯ ЭЛЕКТРОЛИЗА

1. Обжиг и пуск электролизеров

Целью обжига электролизеров с самообжигающимся анодом является формирование нового анода, коксование углеродистых швов подины и прогрев катодного и анодного устройств электролизера до температур, близких к эксплуатационным. Для электролизеров OA задача упрощается, поскольку формирования и обжига анода не требуется.

Обычным источником тепла при обжиге является джоулево тепло, выделяющееся при прохождении постоянного тока через электролизер. При обжиге электролизеров после капитального ремонта, когда не требуется обжига анода, прогрев подины осуществляется горелками, работающими на газообразном или жидком топливе.

Обжиг электролизеров ВТ производится одновременно для всего корпуса с постепенным подъемом силы тока в течение 45 ч до величины на 6—10% выше эксплуатационной и с выдержкой при этой силе тока в течение около 30 ч. Общее время обжига составляет 75 ч. Превышение силы тока выше номинальной позволяет поднять температуру подины до величины, близкой к эксплуатационной, за достаточно короткое время.

При обжиге электролизеров с самообжигающимися анодами основное внимание уделяют процессу обжига анода. По мере подъема силы тока происходит расплавление и коксование анодной массы, начиная с подошвы анода. Этот процесс идет не всегда равномерно по сечению анода, и регулирование его проводят отключением наиболее перегретых штырей. Зона скоксовавше-гося анода постепенно поднимается и образуется так называемый «конус спекания», который в конце обжига должен иметь высоту не менее 50 см от подошвы анода. Одновременно с ростом «конуса спекания» загружают анодную массу, чтобы уровень жидкой анодной массы был не менее 20 см. Температура подины под центром анода в конце обжига должна быть не ниже 850 °С.

По окончании обжига производится пуск электролизеров, который слагается из следующих операций:

1) загрузка пусковых материалов — вокруг анода на подину наносят слой фтористого кальция (600— 800 кг) , затем слой фтористого натрия и свежий криолит (5000—6500 кг), причем количество фтористого натрия должно быть таково, чтобы криолитовое отношение составляло 2,9; 2) заливка в ванну жидкого электролита — через специальные проемы в слое пусковых материалов заливают не мерее 12 т электролита в возможно короткий срок (около 20 мин) при непрерывном подъеме анода, но так, чтобы анод оставался погруженным в электролит; 3) наплавление электролита за счет загрузки свежего, флотационного или оборотного криолита; при этом поддерживают состояние непрерывного анодного эффекта в течение 1 ч при напряжении около 30 В.

Собственно пуск считается законченным, если уровень электролита достиг не менее 2/з высоты шахты ванны. Пуск электролизеров — чрезвычайно ответственная операция. Подина ванны, несмотря на предварительный нагрев, испытывает тепловой удар, поэтому в некоторых случаях может происходить отслаивание верхней части угольных подовых блоков и швов, а в электролите накапливается значительное количество’ взвешенных угольных частиц, которые следует удалять. На прогрев подины требуется дополнительное тепло, поэтому после пуска на ванне поддерживают высокое напряжение (7—10 В). Кроме того, в период пуска и послепусковое время происходит избирательное пропитывание угольной футеровки фтористым натрием, поскольку эта соль является поверхностно-активной на границе электролит — уголь. Для того чтобы уменьшить пропитку, особенно в пусковой период, на подину ванны при пуске наносят слой фтористого кальция — менее поверхностно-активного компонента.

После наплавления электролита в ванну в течение 6—12 ч заливают алюминий в количестве 4—6 т и начинают постепенное снижение напряжения, чтобы в течение 3 сут довести его до номинальной величины. В послепусковой период корректировку электролита проводят фтористым натрием или содой, причем эти соли вводят при анодном эффекте в количествах 100— 200 кг.

Одной из основных задач послепускового периода является формирование рабочего пространства электролизера. Подина электролизера должна быть в про-•странстве борт — анод закрыта настылью (рис. 36), боковые стенки — гарниссажем, сверху электролит должен быть закрыт коркой, на которую насыпан слой глинозема. Подовая настыль уменьшает рабочую площадь катодного металла, что способствует повышению фактической катодной плотности тока и увеличению выхода по току. Кроме того, при наличии подовой настыли уменьшаются поперечные токи в металле и вызванное этим искривление поверхности алюминия (см. гл. IX).

Схема рабочего пространства электролизера

Рис. 36. Схема рабочего пространства электролизера: 1 — футеровка; 2 — подовая настыль; 3 — боковой гарниссаж; 4 — электролитная корка; 5 — глиноземная засыпка; 6 — анод; 7 — электролит; 8 — алюминий

Гарниссаж защищает боковую футеровку от разрушения и служит теплоизоляцией электролизера. Толщина корки электролита и, особенно, глиноземной засыпки, в значительной мере определяет потери тепла электролизера и, следовательно, его тепловое равновесие с окружающей средой.

Послепусковой период считается законченным, когда электролизер выйдет на нормальный технологический режим и будет давать алюминий достаточно высокого

качества. Обычно это достигается в течение 10 сут после пуска.

Обжиг и пуск электролизеров БТ и ВТ после капитального ремонта не требует предварительного формирования и обжига анода, а поэтому проще обжига и пуска новых электролизеров. Подину обычно прогревают и обжигают установками пламенного нагрева, пос-ле чего производят пуск в той же последовательности, что и новых электролизеров.

Обжиг подин электролизеров OA в новых корпусах Осуществляют обычно на коксовой мелочи, которую

ровным слоем выкладывают на поверхности подины. На этот слой устанавливают аноды и включают ток. Подъем тока ведут по графику так, чтобы в конце обжига температура подины достигла 900—950 °С; минимально необходимое время для этого 24 ч. После обжига подину очищают от коксовой мелочи и пускают электролизер, аналогично пуску электролизеров БТ

2. Состав анодной массы и технология самообжигающегося анода

Исходными материалами для производства анодной массы служат нефтяной или пековый кокс и каменноугольный пек в качестве* связующего. Нефтяной кокс получают при коксовании крекинговых и пиролизных остатков при переработке нефти, пековый кокс — при коксовании каменноугольного пека. Оба вида кокса должны содержать 0,3—0,6% золы и менее 3% влаги. По физическим, свойствам эти коксы существенно различны: нефтяной кокс более порист и содержит до 7% летучих, пековый кокс имеет плотную-структуру и содержит около 1 % летучих. Большой недостаток, нефтяных коксов — высокое содержание серы. По ГОСТу содержание серы в коксе не должно превышать 1%, однако коксы отечественных заводов содержат серы до 3%. Такие коксы следовало бы; прокаливать при температурах до 1800 °С в электрокальцинаторах. для удаления серы. Однако эта операция довольно дорогая. Введение же сернистых коксов в анодную массу приводит к образованию сульфида железа на поверхности стальных анодных штырей, что увеличивает сопротивление на границе штырь — анод. Кроме того, загрязняется атмосфера корпусов электролиза сернистыми соединениями.

Кокс, поступающий на завод, проходит прокалку во вращающихся печах при 1200—1300 °С. При этом происходит не только удаление влаги и летучих, но и перестройка структуры кокса, в результате которой кокс становится более плотным и электропроводным. Прокалку нефтяного кокса, содержащего большое количество летучих, проводят с дожиганием летучих в котлах-утилизаторах, что позволяет получать большое количество вторичного тепла.

Прокаленный кокс дробят и измельчают в шаровых мельницах^ затем классифицируют по фракциям. В смесительные машины коке поступает следующего гранулометрического состава: —5 +1 мм> (крупка) 34—40%; —1 +0,15 мм (отсев) 13—17%; —0,15 +0,075 мм 9—12%; —0,075 мм (пыль) 38—41%.

Гранулометрический состав кокса (так называемой «сухой» шихты) должен не только обеспечивать получение наиболее плотно упакованной структуры твердых частиц, но и такие свойства массы, как текучесть и пластичность. В последнее время стали применять шихту укрупненного гранулометрического состава, в которую введено до 4% кокса с частицами размером от 5 до 15 мм. Опыт показывает, что расход анода при этом уменьшается и усадка массы при коксовании понижается, поскольку такая шихта требует меньше связующего.

Связующим служит каменноугольный пек — продукт термической обработки каменноугольных смол, получающихся при коксовании природных углей. При нагревании происходит отгонка легколетучих фракций смолы и в остатке получается пек. В зависимости от полноты отгонки изменяется состав пека и важнейший его показатель — температура размягчения.

Химический состав пека чрезвычайно сложен и зависит от природы исходных материалов. Элементарный состав (по Степаненко) следующий, % (по массе): С 92—93; Н 4,6—4,5; S 0,8—0,7; N 1,4— 1,3; О 1,1—0,7, причем большему содержанию углерода и меньшему— водорода отвечают пеки с более высокой температурой размягчения.

По отношению к органическим растворителям в пеках различают определенные группы. Высокомолекулярные фракции, нерастворимые в бензоле (пиридине или хинолине), называемые карбенами, или α-группой, содержат большое количество неорганических веществ и частиц углерода. В процессе коксования α-группа дает коксовый остаток; чем больше содержание этой группы, тем выше вязкость пека. Среднемолекулярные фракции — асфальтены, или β-группа растворимы в бензоле, но нерастворимы в бензине. При коксовании эта группа дает большой коксовый остаток, который определяет прочность получающегося электрода. Низкомолекулярная фракция — мальтены, или γ-группа — растворимая в бензине, представляет собой летучие вещества. Их роль состоит в придании пеку жидкотекучести. Чем больше содержание γ-группы, тем ниже температура размягчения пека. При медленном нагреве, который имеет место в самообжигающемся аноде, мальтены постепенно превращаются в асфальтены, при быстром — большая часть их улетучивается.

Связующие свойства пека определяют по величине коксового остатка (или выходу кокса), который зависит от содержания а- и β-групп. С повышением температуры размягчения пека растет выход кокса; так, для низкотемпературного пека (температура размягчения 65—70 °С) выход кокса составляет 35—40%, а для высокотемпературного (температура размягчения 85—90°С)—50—55%. Поэтому применение пеков с высокой температурой размягчения позволяет получить анод более плотный, менее реакционноспособ-ный и снизить расход его при электролизе.

Количество связующего, применяемое для изготовления прессованных изделий, составляет 20—22%, для анодной массы самообжигающихся электродов —29—31%. Содержание связующего должно быть таким, чтобы покрыть поверхность частиц кокса-наполнителя и заполнить все свободное пространство между этими частицами. В этом отношении разницы между прессованными и самообжигающимися анодами как будто нет. Но анодная масса должна обладать и определенными пластическими свойствами: при плавлении пека растекаться по поверхности анода и легко заполнять пустоты, остающиеся при извлечении штырей в электролизерах ВТ. Поэтому содержание пека в массе для самообжигающихся анодов должно быть выше, чем для прессованных. Кроме того, содержание пека зависит от гранулометрического состава «сухой шихты» — чем он мельче, тем больше должно быть пека. Если внутренняя структура кокса рыхлая, много пор, доступных для проникновения в них пека (нефтяной кокс), то количество связующего также должно быть повышено. При всем этом содержание пека не должно быть слишком высоким, так как пек при коксовании претерпевает значительную усадку, что вызывает внутренние напряжения в электроде и способствует образованию большого числа трещин, а, следовательно, понижается прочность электрода и повышается его реакционная способность.

В самообжигающемся аноде имеется три зоны, различающиеся по физико-химическим процессам, в них происходящим: 1) между поверхностью жидкой анодной массы и изотермой 400 °С; 2) между изотермами 400—550 °С; 3) ниже изотермы 550 °С. Рассмотрим кратко процессы, происходящие в этих зонах анода.

В первой зоне происходит нагрев и расплавление анодной массы, причем температура поверхности ее составляет обычно 120— 150 °С. По мере опускания массы и подъема температуры происходят процессы полимеризации углеводородов пека и дистилляции из него летучих веществ. Очень важно, чтобы летучие погоны пека были направлены в низ анода, где они проходят вторичный крекинг в порах уже скоксовывавшегося электрода, что существенна улучшает качество анода. Если уровень жидкой анодной массы недостаточен, а температура поверхности высокая, то летучие будут поступать в первую зону и испаряться с поверхности массы. Это нежелательно не только из-за загрязнения атмосферы цеха и потерь ценных составляющих пека, но и из-за нарушения нормального течения процессов в первой зоне. Летучие взаимодействуют с пеком верхних слоев и сильно понижают температуру его размягчения, что вызывает отстой пека. Поскольку пек имеет плотность 1,3 г/см3, а кокс 2,0 г/см3, то в пеке пониженной вязкости может происходить процесс седиментации, т. е. разделения кокса по фракциям: крупные частицы будут опускаться, а пыль останется в пеке. При коксовании такой массы будет наблюдаться слоистая структура — слой, обогащенный крупкой с недостатком пека и поэтому рыхлый, и слой с избытком пека, с большой усадкой и наличием многих трещин. Расслоение приведет к увеличению расхода анода при электролизе вследствие осыпания крупки. Кроме того, при обработке ванны возможен откол крупных кусков анода, что может вызвать серьезные нарушения нормального технологического процесса. Поэтому высота слоя жидкой анодной массы должна быть достаточно большой: для электролизеров БТ — около 40 см, для электролизеров ВТ — 25 см. Эта разница вызвана тем, что в электролизерах последнего типа анод работает с большей тепловой нагрузкой, т. е. выделяется тепла в нем больше, чем в анодах электролизеров БТ. Для увеличения слоя жидкой анодной массы и понижения ее температуры известны разные системы охлаждения, наиболее простой и эффективной из них является применение алюминиевых полос, полупогруженных в жидкую анодную массу (Коробов).

Во второй зоне при температуре около 400 °С происходит образование полукокса — отдельные зерна кокса-наполнителя соединяются коксовыми мостиками, и масса начинает твердеть. Поэтому изотерма 400 °С приблизительно отвечает конусу спекания анода. При коксовании выделяется значительное количество газов, состав которых зависит от температуры. Так, при 400 °С содержится (по Степаненко) метана 57,4% (по массе), водорода 37,5%, при 800°С содержание водорода повышается до 92,7%, а метана понижается до 4,4%. Это означает, что в начале зоны идут процессы пиролиза и крекинга, сопровождающиеся выделением метана, а затем при температуре выше 500 °С происходит дегидрирование с выделением водорода.

В третьей зоне при температурах выше 550 °С полукокс переходит в кокс, однако электропроводным кокс становится только при температуре выше 700 °С. Газы коксования, в основном метан,

поступают из второй зоны в третью и разлагаются здесь при температурах 700—900 °С с выделением водорода и углерода. Отлагаясь в порах кокса, углерод вторичного крекинга не только уменьшает пористость анода, но и повышает его прочность и электропроводимость. Было показано (Сем), что отложение углерода всего 3% (по массе) приводит к понижению электросопротивления на 25% и повышению механической прочности на 75%.

Исследования поля давлений и состава газов на промышленных электролизерах (Аюшин и Коробов) показали, что газы коксования движутся не вертикально вниз, а отклоняются к боковым граням анода (рис. 37) вследствие малого сопротивления на этом пути. Чем меньше ширина анода, тем большее количество газов уходит к боковым граням. Эти газы минуют зону высоких температур, при которых проходит вторичный крекинг, поэтому качество анода ухудшается. На электролизерах БТ это явление развито в-

движения газов в аноде электролизера

Рис. 37. Схема движения газов в аноде электролизера ВТ (Коробов. Аюшин): 1— уровень жидкой анодной массы; 2 — конус спекания; 3 — газы коксования; 4 — анодные газы; 5 — уровень электролита; 6 — уровень алюминия; 7 — анодный кожух; 8 — газосборный колокол; 9 — электролитная корка; 10 — футеровка

меньшей степени, чем на ваннах ВТ, поскольку первые имеют алюминиевую обечайку, непроницаемую для газов, и сопротивление газовому потоку сильно возражает. На электролизерах ВТ между анодным кожухом и телом анода имеется зазор, что способствует проникновению газов. Кроме того, при верхнем токоподводе анод имеет много трещин и лунок, через которые газы коксования легко проходят к боковым граням анода.

Существенное понижение качества анода происходит также при проникновении в тело анода анодных газов, выделяющихся на подошве анода в результате электрохимического процесса. Углекислый газ, проникая в анод через поры, вступает в реакцию Будуара, что приводит к разработке пор и ухудшению качества анода. Кроме потерь углерода по реакции Будуара, его расход увеличивается и за счет повышенной осыпаемости анода (Коробов). Этот эффект зависит от газопроницаемости анода — чем она меньше, тем меньше анодных газов проходит по этому пути. Кроме того, количество газов уменьшается с уменьшением глубины погружения анода в электролит, так как большая часть газов проходит через-расплав.

11

10 12